Air passenger forecasting by using a hybrid seasonal decomposition and least squares support vector regression approach
نویسندگان
چکیده
In this study, a hybrid approach based on seasonal decomposition (SD) and least squares support vector regression (LSSVR) model is proposed for air passenger forecasting. In the formulation of the proposed hybrid approach, the air passenger time series are first decomposed into three components: trend-cycle component, seasonal factor and irregular component. Then the LSSVR model is used to predict the components independently and these prediction results of the components are combined as an aggregated output. Empirical analysis shows that the proposed hybrid approach is better than other benchmark models, indicating that it is a promising tool to predict complex time series with high volatility and irregularity.
منابع مشابه
Short-term forecasting of air passenger by using hybrid seasonal decomposition and least squares support vector regression approaches
In this study, two hybrid approaches based on seasonal decomposition and least squares support vector regression (LSSVR) model are proposed for short-term forecasting of air passenger. In the formulation of the proposed hybrid approaches, the air passenger time series is first decomposed into three components: trend-cycle component, seasonal factor and irregular component. Then the LSSVR model ...
متن کاملHybrid approaches based on LSSVR model for container throughput forecasting: A comparative study
In this study, three hybrid approaches based on least squares support vector regression (LSSVR) model for container throughput forecasting at ports are proposed. The proposed hybrid approaches are compared empirically with each other and with other benchmark methods in terms of measurement criteria on the forecasting performance. The results suggest that the proposed hybrid approaches can achie...
متن کاملShort Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression
The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...
متن کاملForecasting Air Pollution Concentrations in Iran, Using a Hybrid Model
The present study aims at developing a forecasting model to predict the next year’s air pollution concentrations in the atmosphere of Iran. In this regard, it proposes the use of ARIMA, SVR, and TSVR, as well as hybrid ARIMA-SVR and ARIMA-TSVR models, which combined the autoregressive part of the autoregressive integrated moving average (ARIMA) model with the support vector regression technique...
متن کاملDetermination of 137Ba Isotope Abundances in Water Samples by Inductively Coupled Plasma-optical Emission Spectrometry Combined with Least-squares Support Vector Machine Regression
A simple and rapid method for the determination of 137Ba isotope abundances in water samples by inductively coupled plasma-optical emission spectrometry (ICP-OES) coupled with least-squares support vector machine regression (LS-SVM) is reported. By evaluation of emission lines of barium, it was found that the emission line at 493.408 nm provides the best results for the determination...
متن کامل